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Abstract. We give a definition of the class of functions with a concave minorant and compare
these functions with other classes of functions often used in global optimization, e.g. weakly convex
functions, d.c. functions, Lipschitzian functions, continuous and lower semicontinuous functions. It
is shown that the class of functions with a concave minorant is closed under operations mainly used
in optimization and how a concave minorant can be constructed for a given function.
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1. Introduction

At the present time the widest class of objective functions considered in global
optimization consists of locally Lipschitzian functions. Many methods have been
developed for solving Lipschitzian optimization problems (see, for example, Ev-
tushenko 1972; Galperin 1988; Hansen and Jaumard 1995; Meewella and Mayne
1988; Nefedov 1987; Pijavskii 1967; Pintér 1996; Wood 1992, and many others;
see also Horst and Tuy 1996 and references therein). However, the efficiency of
these methods essentially depends on the estimation accuracy of the Lipschitz
constant. Some methods for the estimation of Lipschitz constants are given in
Strongin (1978), Sukharev (1989) and Pintér (1996). Nevertheless, the problem
of estimating a Lipschitz constant quite exactly is rather difficult itself.

Another class is formed by functions, which can be represented as a difference
of two convex functions. Such functions are called d.c. functions (‘d.c.’ stands for
the abbreviation of ‘difference of two convex’). A representation of a d.c. function
as a difference of two convex functions is usually called a d.c. decomposition. It
is known that each d.c. function is a locally Lipschitzian function. The inverse
statement is not always true (see Hirriart-Urruty 1985). Hence, the d.c. functions
form a very important subclass of locally Lipschitzian functions. The special struc-
ture of d.c. functions allows one to construct more effective global minimization
methods than those for Lipschitzian functions (Horst and Tuy 1996; Thach and
Tuy 1992; Tuy 1987). The main difficulty here is how to construct an effective d.c.
decomposition for a given d.c. function. A general theory of d.c. optimization in-
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cluding duality, minimization methods and different ways of d.c. decomposition is
described in Tuy (1995). Special d.c. minimization methods together with effective
d.c. decompositions and duality with zero gap for the so called low rank nonconvex
functions are described in Konno, et al. (1997) and Thach and Konno (1993). If a
given functionf (x)is a low rank nonconvex function, then this means thatf (x)

is almost convex or convex in almost all variables. So, the underlying convexity is
the most important property here. Similarly, one can consider high rank nonconvex
functions or low rank convex functions, i.e. functions that are nonconvex in almost
all variables. It seems that in this case the most important and useful property is
concavity. For example, it is easier to find a global minimum of a concave function
over a simplex under a reverse convex constraint than to find a global minimum of
a convex function over the same feasible set.

In this paper we study functions that can be expressed as the maximum of a
family of continuous concave functions:

f (x) = max
y∈R

ϕ(x, y), (1.1)

whereR ⊂ En is a compact set andϕ(x, y) is a continuous function which is
concave inx.

Similar approaches were developed earlier by different authors (see Baritompa
1994; Baritompa and Cutler 1994; Breiman and Cutler 1993). Dolecki (1978) tried
to develop a duality theory based on representation (1.1) under some additional
(and restrictive) assumptions.

Here we describe only practically implementable approaches. In Bulatov (1987),
extensions of cutting plane methods from concave minimization to minimization
of functions of type (1.1) were given. The most similar approach was described in
Norkin (1992). In our paper we present some new results partly connected with the
investigations of V. Norkin. The concept of a support function was introduced in
Zabotin and Khabibulin (1975) in order to develop general optimality conditions
for constrained extremal problems. A survey of approaches based on representation
(1.1), whereϕ(x, y) is not concave inx is given in Avriel et al. (1988).

The paper is organized in the following way. In Section 2 we give the definition
of functions with a concave minorant and compare them with other classes of
functions. Section 3 describes how a concave minorant can be constructed for a
given function. Section 4 is devoted to minimization of functions with a concave
minorant over a compact set. In Section 5 we show how a dual lower bound can be
used for the problem described in Section 4. Section 6 contains several examples
showing different properties of special concave minorants.
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2. Definition and comparison with other classes of functions

Let a setR ⊂ En and a real valued functionf (x), f : R→ E1 be given.

DEFINITION 2.1. A functionf (x) is said to have a concave minorant onR if
there exists a functionϕ(x, y), ϕ : En × R → E1, continuous inx for any fixed
y, such that

1. ϕ(x, y) is concave inx;
2. f (x) > ϕ(x, y) ∀(x, y) ∈ R × R; (2.1)

3. f (y) = ϕ(y, y) ∀y ∈ R. (2.2)

The functionϕ(x, y) is called a concave minorant off (x), constructed at the
point y ∈ R. The set of all functionsf (x), f : R → E1, which have a concave
minorant onR is denoted byCM(R) and each functionf ∈ CM(R) is called c.m.
function onR.

Below we assume thatR ⊂ En is a compact set. The functional classCM(R)
is quite large, since it is not difficult to see that any Lipschitzian functionf (x) is
also a c.m. function with

ϕ(x, y) = f (y)− L‖x − y‖, (2.3)

where L is the Lipschitz constant.
Let f ∈ CM(R) with the concave minorantϕ(x, y). Then obviously

f (x) = max
y∈R

ϕ(x, y). (2.4)

Sinceϕ(x, y) is continuous inx, then due to representation (2.4),f (x) must be a
lower semicontinuous (l.s.c.) function as an upper envelope of a family of continu-
ous functions. Hence, we can formulate the following Proposition.

PROPOSITION 2.1.Every functionf ∈ CM(R) is l.s.c. onR.

Thus, a c.m. function is a l.s.c. function which can be considered as a pointwise
maximum of a family of continuous concave functions. Then the question arises:
what is the difference between a c.m. function and a l.s.c. function? The following
example shows, that not every l.s.c. function is a c.m. function.

EXAMPLE 2.1. Define onR = [0,2] ⊂ E1 the univariate functionf (x)

f (x) =
{

1−√1− x2, 06 x 6 1
2−√1− (x − 2)2, 1< x 6 2.

It is not difficult to see, thatf (x) is l.s.c. onR, but it is impossible to construct
a concave minorant off (x) at the pointy = 1. Hence, there are some ‘points of
dissimilarity’ between c.m. and l.s.c. functions.
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DEFINITION 2.2. LetR ⊂ En be a compact set andf (x) a l.s.c. function onR.
The pointy ∈ R is called a c.m. point off (x) if f (x) has a concave minorant at
y.

Let us introduce the following set:

dom(f,R) = {x ∈ R : f (x) < +∞}
and let us denote byclD the closure of a setD ⊂ En.
THEOREM 2.1. The set of all c.m. points of a l.s.c. functionf (x) onR is dense
in dom(f,R).

Proof. Recall that a setA is dense in a setB if clA ⊃ B. Denote byM the set
of all c.m. points of f(x) onR. Let y ∈ dom(f,R). To prove thaty ∈ clM we use
the Ekeland Theorem (Ekeland and Temam 1976) which states the following. Let
for some pointz ∈ R andε > 0 the inequality

f (z) 6 inf{f (x) : x ∈ R} + ε (2.5)

be fullfiled, then for anyλ > 0 there exists a pointv ∈ R, such that

f (v) 6 f (z), (2.6)

‖z− v‖ 6 λ (2.7)

and for allx ∈ R we have

f (x)+
(ε
λ

)
‖x − v‖ > f (v).

Sincey ∈ dom(f,R) then inequality (2.5) holds forz = y and ε = f (y) −
inf{f (x) : x ∈ R}. Due to the Ekeland Theorem for anyλk = 1/k there exists the
point vk ∈ R, such that

‖y − vk‖ 6 λk, (2.8)

f (x)+
(
ε

λk

)
‖x − vk‖ > f (vk), ∀x ∈ R. (2.9)

It follows from (2.9) that at each pointvk the functionf (x) has a concave minorant

ϕ(x, vk) = f (vk)−
(
ε

λk

)
‖x − vk‖, k = 1,2, . . .

Hence,vk is a c.m. point off (x) onR. By virtue of (2.8) pointy is the limit point
of the sequence{vk} of c.m. points, soy ∈ clM. 2

Thus, an arbitrary l.s.c. function onR has a concave minorant almost every-
where and iff (x) does not have a concave minorant at some pointz ∈ R, then due
to (2.6), (2.7) there exists a c.m. pointv ∈ R, ‘not far fromz’, with a possibly less
functional value. From (2.8) and (2.9) we can draw the following conclusion.
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PROPOSITION 2.2.Every local minimum of a l.s.c. function over the compact
setR is a c.m. point.

Now we can say that there is a very close relationship between c.m. functions
and l.s.c. functions. For a c.m. function we have the max representation (2.4). How
strongly can it be destroyed when we move from a c.m. function to a l.s.c. one?
The following result is in fact the Korovkin theorem proved in Kutateladze and
Rubinov (1976).

THEOREM 2.2. A finite functionf : R → E1, is l.s.c. on a compact setR if
and only if it can be represented as the upper envelope (pointwise supremum) of a
nonempty family of continuous concave functionsϕ(x, y), y ∈ Y :

f (x) = sup
y∈Y

ϕ(x, y). (2.10)

2

From the aforesaid, we can conclude that the difference between a c.m. function
and a l.s.c. function is exactly the difference between the operations max and sup
over a family of continuous concave functions.

Now we can also see an analogy between l.s.c. convex functions and l.s.c. func-
tions. Both are obtained as pointwise supremums of some auxiliary families of
continuous functions : for l.s.c. convex functions it is the family of affine functions
and for l.s.c. (nonconvex) functions it is the family of concave functions.

Let us now see how we can move (more or less gradually) from the convex l.s.c.
functions to the l.s.c. functions.

Our first step leads to the so-calledρ-convex functions (Vial 1983).

DEFINITION 2.3. Letf : D→ E1 be a real valued function on a convex subset
D of En. f is said to beρ-convex if there exists some real numberρ, such that
∀x1, x2 ∈ D,∀λ ∈ [0,1]

f (λx1+ (1− λ)x2) 6 λf (x1)+ (1− λ)f (x2)− ρλ(1− λ)‖x1− x2‖2.
if ρ > 0, the function is said to be strongly convex;
if ρ = 0, the function is convex;
if ρ < 0, the function is said to be weakly convex.

We are interested in the third (nonconvex,ρ < 0) case, i.e. in weakly convex
functions. The following two results are important for our consideration (for the
proofs, see Vial 1983).

PROPOSITION 2.3.A functionf : En → E1 is ρ-convex if and only if for any
x ∈ En there is someξ ∈ En such that

f (x) > f (y)+ ξT (x − y)+ ρ‖x − y‖2, ∀y ∈ En.
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Hence, a weakly convex functionf (x) is a c.m. function with the minorant

ϕ(x, y) = f (y)+ ξT (x − y)+ ρ‖x − y‖2, ρ < 0. (2.11)

Therefore, a weakly convex function is an upper envelope of the family of concave
functions and each concave auxiliary function is of the type (2.11).
From the following statement we can see also how much convexity was ‘lost’ in
the movement from convex functions to weakly convex functions.

PROPOSITION 2.4.A functionf : En → E1 is ρ-convex if and only if there
exists a convex functionh(x), h : En→ E1 such that

f (x) = h(x)+ ρ‖x‖2. (2.12)

We still have the convexity property, but now in the two opposite directions, since
for weakly convex functions the constantρ is negative. In other words we have
‘some amount’ of convexity ‘for’ and the ‘other amount’ of convexity ‘against’ and
this ‘negative amount’ of convexity is of a rather particular form:ρ‖x‖2, ρ < 0.

Let us consider now the following generalization of the weakly convex func-
tions : in decomposition (2.12) we substitute the termρ‖x‖2 by an arbitrary con-
cave function. In this way we arrive at the very important concept of d.c. functions.

DEFINITION 2.4. LetD ⊂ En be a convex set. A functionf : D→ E1 is called
d.c. onD if there are two convex functionsp : D→ E1, q : D→ E1 such that

f (x) = p(x)− q(x), ∀x ∈ D. (2.13)

A function that is d.c. onEn will be called a d.c. function.

The main properties of d.c. functions were studied in Hirriart-Urruty (1985), Horst
and Tuy (1996) and Tuy (1995). Letf (x) be a d.c. function and the decomposition
(2.13) be known. From the convexity ofp(x) it follows that the function

ϕ(x, y) = p(y)+ ξT (x − y)− q(x), ξ ∈ ∂p(y), (2.14)

where∂p(y) denotes the subdifferential ofp at the pointy, is a concave minorant
of f (x) aty. Therefore, every d.c. function is a c.m. function.

Let us formulate analogue of Theorem 2.2 for d.c. functions. Consider the
following generalization of function (2.14)

ψ(x, y) = c(y)T (x − y)+ r(y)− q(x), (2.15)

wherec(y) ∈ En, r(y) ∈ E1, y ∈ Y , Y is some nonempty set andq(x) is a
continuous convex function. Note, that in the definition ofψ(x, y) we use arbitrary
functionsr(y) andc(y). Taking the supremum ofψ(x, y) overy ∈ Y , we obtain

sup
y∈Y

ψ(x, y) = sup
y∈Y
{c(y)T (x − y)+ r(y)− q(x)}

= sup
y∈Y
{c(y)T (x − y)+ r(y)} − q(x) (2.16)

= v(x)− q(x),
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where

v(x) = sup
y∈Y
{c(y)T (x − y)+ r(y)}

is a convex function as the pointwise supremum of a family of affine functions.
Combining (2.14), (2.15) and (2.16), we have the following:

PROPOSITION 2.5.A functionf : En→ E1 is a d.c. function if and only if

f (x) = sup
y∈Y

ψ(x, y),

whereψ(x, y) is a function of type (2.15).

The next example shows that there is a gap between d.c. and c.m. functions.

EXAMPLE 2.2. Consider the following univariate function

f (x) =
 1, x < 0

0, x = 0
2, x > 0

It is easy to see that the function

ϕ(x, y) =
 min{1, x/y}, y < 0

0, y = 0
min{2,2x/y}, y > 0

is a concave minorant forf (x). Hence,f (x) is a c.m. function, but not a d.c.
function, since every d.c. function is locally Lipschitzian (Hirriart-Urruty 1985)
and, therefore, continuous.

Denote by Lip(R,L) the set of all Lipschitzian functions defined on a compact
setR with the Lipschitz constantL. We have already seen that eachf ∈ Lip(R,L)
is also a c.m. function. The inverse statement is not true (see Example 2.2). On the
other hand, since every l.s.c. function is ‘almost’ a c.m. function, some connection
between locally Lipschitzian functions and c.m. functions can be described by the
following proposition.

PROPOSITION 2.6.Letf : R→ E1 be a l.s.c. function onR,f (x) > −∞,∀x ∈
R, R be a compact set. Then there exists a sequence of functionsfk : R → E1

such that∀x ∈ R
f1(x) 6 f2(x) 6 . . . ,

f (x) = lim
k→∞ fk(x)

andfk ∈ Lip(R), where Lip(R) = ∪L>0Lip(R,L).
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The proof of this proposition can be found in Natanson (1977, Theorem 10, pp.
467–468).

Note that continuous functions as a subclass of l.s.c. function can be represented
as a pointwise supremum of a family concave functionsϕ(x, y), y ∈ Y, Y 6=
∅. The theorem below (Norkin 1992) gives conditions under which the pointwise
supremum of a family of concave functions is a continuous function.

THEOREM 2.3. Let functionf : En→ E1 be representable as

f (x) = sup
y∈Y

ϕ(x, y),

whereϕ(x, y), y ∈ Y, Y 6= ∅ is a family of equicontinuous concave functions.
Thenf (x) is continuous. 2

Let us make some concluding remarks.
We started from a l.s.c. convex function, which is the upper envelope of a family

of affine functions. Then we saw that a weakly convex function is the upper enve-
lope of a family of concave continuous functions of the type (2.11). Substituting
the termρ‖x−y‖2 in (2.11) by an arbitrary concave function we obtained concept
of d.c. functions. Only the linear part of the concave minorant (2.14) depends on
y. If the concave part also depends ony, then the upper envelope of the family of
concave equicontinuous functions is continuous and the upper envelope of a family
of arbitary concave continuous functions is lower semicontinuous.

In other words, if we may say that a convex l.s.c. function has a ‘positive amount
of convexity’. Then the weakly convex function still has a ‘positive amount of
convexity’, but it has some ‘negative amount of convexity’ (or some ‘amount of
concavity’), although of a rather particular form. For the d.c. function the ‘negative
amount of convexity’ is allowed to be of a rather general form. We say that for
the d.c. function ‘positive’ and ‘negative amount of convexity’ have equal rights of
‘existence’. For the continuous and l.s.c. functions we have information only about
the ‘negative amount of convexity’.

The gap between Lipschitzian and l.s.c. functions is (more or less) characterized
by Proposition 2.6.

In each case the connection with the concept of a c.m. function was shown.
From the practical point of view, c.m. functions are very general, but they can be
used in the situations when no additional information exept the c.m. property is
available.

3. Main properties of c.m. functions

Let a family of c.m. functions be given. We will say that an operation (e.g. supre-
mum, composition, etc.) preserves the c.m. property of the family of c.m. functions
if the result of the operation is still a c.m. function. The purpose of this Section is
to describe operations, which are often used in mathematical programming and
preserve the c.m. property.
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The next proposition follows directly from the Definition 2.1. We use the term
nonnegative combination to denote a linear combination with nonnegative coeffi-
cients.

PROPOSITION 3.1.Let c.m. functionsf (x), fi(x), i = 1, . . . ,m be given. Then
the following statements are true.
(i) Any nonnegative combination of the functionsfi(x) is a c.m. function;

(ii) max16i6m fi(x) andmin16i6m fi(x) are c.m. functions;
(iii) f +(x) = max{0, f (x)}, f −(x) = min{0, f (x)} are c.m. functions.

Let us introduce the following:

DEFINITION 3.1. A functionf : En → E1 is called monotoneously nonde-
creasing if for anyx, y ∈ En such thatxi > yi, i = 1, . . . , n, f satisfies
f (x) > f (y).

If g1(x), . . . , gm(x) are concave functions onEn andh : Em → E1 is a monoto-
neously nondecreasing concave function, then the composite functionf (x) =
h(g1(x), . . . , gm(x)) is a concave function (Bazaraa and Shetty 1979). From this
property we easily derive

PROPOSITION 3.2.Let gi : En → E1, i = 1, . . . ,m andh : Em → E1 be
c.m. functions. If for any fixedy ∈ Em there exists a monotoneously nondecreas-
ing concave minorantϕh(x, y) of the functionh, thenf (x) = h(g(x)) is a c.m.
function.

Proof. Let ϕi(x, y) be concave minorants of the functionsgi(x), i.e. ∀(x, y) ∈
En ×En

gi(x) > ϕi(x, y), i = 1, . . . ,m, (3.1)

gi(y) = ϕ(y, y), i = 1, . . . ,m (3.2)

and letϕh(u, v), (u, v) ∈ Em × Em be in u a monotoneously nondecreasing
concave minorant ofh(u). Denote byg(x) the vector functiong(x) = (g1(x),

. . . , gm(x)) and byϕ(x, y) = (ϕ1(x, y), . . . , ϕm(x, y). Then∀(x, y)
f (x) = h(g(x)) > ϕh(g(x), g(y)) (3.3)

From the monotonicity ofϕh and (3.1) we have

ϕh(g(x), g(y)) > ϕh(ϕ(x, y), g(y)) = ϕf (x, y), (3.4)

whereϕf (x, y) is a concave function continuous inx. Similarly,

f (y) = h(g(y)) = ϕh(g(y), g(y)) = ϕh(ϕ(y, y), g(y)) = ϕf (y, y). (3.5)

Hence,ϕf (x, y) is a concave minorant off (x) and, therefore,f (x) is a c.m.
function. 2
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COROLLARY 3.1. Letfi : En → E1, i = 1, . . . , k be c.m. functions. Then the
function

f (x) =
k∑
i=1

[max{0, fi(x)}]q , q > 1

is a c.m. function.

COROLLARY 3.2. Let g0(t) be a positive univariate c.m. function. Then the
functionsln(g0(t)), exp(g0(t)),

√
(g0(t)) are c.m. functions.

Propositions 3.1 and 3.2 describe quite general properties of c.m. functions. If
we have some (nonconvex) function how can we recognize whether this function
is a c.m. function and, moreover, if yes, then how can we construct its concave
minorant? We conclude this Section with a description of a rather wide subclass of
the class of c.m. functions and give rules for the construction of a concave minorant
for a function from this subclass.

DEFINITION 3.2. If a functionf : R→ E1, R ⊂ En satisfies

f ∈ CM(R), −f ∈ CM(R), (3.6)

thenf is called a c.m. symmetric function onR.

The set of all c.m. symmetric functions onR is denoted byCMS(R). If f ∈
CMS(En), thenf is called a c.m. symmetric function. It follows from (3.6) that
for everyf ∈ CMS(R) there exist a functionϕ−(x, y), ϕ− : En × R → E1 con-
tinuous and concave inx and a functionϕ+(x, y), ϕ+ : En × R→ E1 continuous
and convex inx, such that

ϕ−(x, y) 6 f (x) 6 ϕ+(x, y), ∀x ∈ R, y ∈ R, (3.7)

ϕ−(y, y) = f (y) = ϕ+(y, y), ∀y ∈ R. (3.8)

Functionϕ+(x, y) is called a convex majorant andϕ−(x, y) is called a concave
minorant of the functionf (x). Because of Proposition 2.1 a c.m. symmetrical
function is continuous.

PROPOSITION 3.3.Letf ∈ CMS(R) andfi ∈ CMS(R), i = 1, . . . ,m, m >

1, andR be a compact set. Then
(i)
∑m

i=1 λifi ∈ CMS(R), λi ∈ E1;
(ii) f 2 ∈ CMS(R);
(iii) f1 · f2 ∈ CMS(R);
(vi) if f (x) > 0,∀x ∈ R, then1/f (x) ∈ CMS(R);
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Proof.Denote byϕ+(x, y), ϕ−(x, y) a convex majorant and a concave minorant
of f (x) and byϕ+i , ϕ

−
i (x, y) a convex majorant and a concave minorant of the

functionsfi(x), respectively.
(i) It is not difficult to see that the function∑
i:λi>0

λiϕ
−
i (x, y) +

∑
i:λi<0

λiϕ
+
i (x, y)

is a concave minorant and∑
i:λi>0

λiϕ
+
i (x, y) +

∑
i:λi<0

λiϕ
−
i (x, y)

is a convex majorant of
∑m

i=1 λifi(x).

(ii) Since

[f (x)− f (y)]2 > 0, ∀x, y ∈ R,
we have

f 2(x) > 2f (x)f (y)− f 2(y).

Hence, a concave minorant off 2(x) can be determined in the following way:

ψ−(x, y) =
{

2f (y)ϕ−(x, y) − f 2(y), f (y) > 0
2f (y)ϕ+(x, y) − f 2(y), f (y) < 0

.

Sincef (x) is continuous, there exist numbersa andb such that

a < f (x) < b, ∀x ∈ R. (3.9)

From the convexity of functiong(t) = t2 we have for any fixed̂t ∈ [a, b]
g(t) 6 max{l1(t), l2(t)}, ∀t [a, b] (3.10)

where

l1(t) = t̂2 + a
2− t̂2
a − t̂ (t − t̂ ), (3.11)

l2(t) = t̂2 + b
2− t̂2
b− t̂ (t − t̂ ). (3.12)

Let t̂ = f (y) for some fixedy ∈ R. Then due to (3.10)

f 2(x) = g(f (x)) 6 max{l1(f (x)), l2(f (x))}. (3.13)
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Denote byK1 = a2 + f 2(y), byK2 = b2 + f 2(y) and consider functions

p1(x, y) =
{
f 2(y)+K1(ϕ

+(x, y) − f (y)), K1 > 0
f 2(y)+K1(ϕ

−(x, y) − f (y)), K1 6 0
, (3.14)

p2(x, y) =
{
f 2(y)+K2(ϕ

+(x, y) − f (y)), K2 > 0
f 2(y)+K2(ϕ

−(x, y) − f (y)), K2 6 0
. (3.15)

It is obvious, that functionspi , i = 1,2 are convex inx for fixed y. Now, from
(3.11)–(3.15) we obtain that the function

ψ+(x, y) = max{p1(x, y), p2(x, y)}
is a convex majorant off 2(x).

(iii) Since

f1(x) · f2(x) = [f1(x)+ f2(x)]2
4

− [f1(x)− f2(x)]2
4

,

this statement follows from the proved statements (i) and (ii).
(vi) Let f (x) > 0∀x ∈ R. Due to the convexity of functiong(t) = 1/t when

t > 0, we have

g(t) >
1

t̂
− 1

t̂2
(t − t̂ ), t̂ > 0. (3.16)

Substitutingt by f (x) andt̂ by f (y) we obtain

1

f (x)
>

1

f (y)
− 1

f 2(y)
(f (x)− f (y)).

Hence, a concave minorant of 1/f (x) can be defined as

τ−(x, y) = 1

f (y)
− 1

f 2(y)
(ϕ+(x, y) − f (y)).

The convex majorantτ+(x, y) can be derived in a similar way. 2

Note, that the proof of the theorem can be practically used to construct a concave
minorant for almost every c.m. symmetrical function given the minorants of the
underlying functions.

4. An approach to the global minimization of c.m. function over a compact
set

We introduce here the notion of a c.m. programming problem that is based on
the definition of a c.m. (c.m. symmetrical) function. Many other authors earlier
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considered approaches based on the representation of the objective function (as
well as of the constraints) as an upper envelope of some set of functions. In this
paper we consider only continuous concave auxiliary functions. A very similar
approach was described in Norkin 1992.

Consider the following mathematical programming problem

minf (x), (4.1)

gi(x) 6 0, i = 1, . . . ,m, (4.2)

hi(x) = 0, i = 1, . . . , l, (4.3)

x ∈ R, (4.4)

whereR ⊂ En is a compact set,f, gi ∈ CM(R), i = 1, . . . ,m, hi ∈ CMS(R), i =
1, . . . , l.

Assume that the feasible set in (4.1)–(4.4) is nonempty. Since every c.m. func-
tion on R is l.s.c. onR and a c.m. symmetrical function onR is continuous,
the feasible domain in problem (4.1)–(4.4) is compact and due to the Weierstrass
Theorem problem (4.1)–(4.4) has a finite solution. We call this problem a c.m.
programming problem. Obviously, a c.m. programming problem can be highly
multiextremal.

First we consider a more simple case whenm = 0, l = 0 andR is convex. Let
x1, x2, . . . , xk be some points inR. Then, it follows from (2.2) that

f (x) > max
16j6k

ϕ(x, xj ) = fk(x), ∀x ∈ R (4.5)

whereϕ(x, y) is a concave minorant off (x). We call the problem

min{fk(x) : x ∈ R} (4.6)

an approximating c.m. problem since due to (4.5)

f ∗ = min
x∈R

f (x) > min
x∈R

fk(x) = f ∗k . (4.7)

Problem (4.6) is again a c.m. programming problem and, therefore, multiextremal,
but here we have the advantage in the special form of the objective function. More
exactly, it was shown in Tuy (1987) thatfk(x) is a d.c. function since

fk(x) = f +k (x)− f −k (x),
where

f +k (x) = − min
16i6k


k∑

j=1,j 6=i
ϕ(x, xj )

 ,
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f −k (x) = −
k∑
j=1

ϕ(x, xj )

and bothf +k (x) andf −k (x) are convex. Introducing now an additional variablexn+1

we can reduce the approximating c.m. problem to the following one:

min{xn+1 − f −k (x)}, (4.8)

f +k (x) 6 xn+1, (4.9)

x ∈ R. (4.10)

The feasible domain in problem (4.8)–(4.10) is convex and the objective func-
tion is concave. Hence, (4.8)–(4.10) is a concave programming problem. Thus,
the problem of global minimization of a c.m. function over a convex set can be
approximated by a sequence of concave programming problems. This fact seems
to be the natural generalization of the approximation of a convex programming
problem by a sequence of linear programs. Therefore, we can say that in general
almost each mathematical programming problem can be approximated by a se-
quence of auxiliary problems, which are not more complicated than the concave
programming problem.

A general c.m. programming problem can be transformed to the problem of
the minimization of a c.m. function over a compact set by using, for example, the
Huard’s method of centers.

5. A dual lower bounding for general c.m. programming problems

In this section we assume that the setR in (4.4) is a polytope with known ver-
tices,R = co{z1, . . . , zN}, zi ∈ En, i = 1, . . . , N,N > n + 1. The system of
constraints (4.2)–(4.3) in problem (4.1)–(4.4) can be rewriten as one constraint

g(x) 6 0, (5.1)

with

g(x) = max{g1(x), . . . , gm(x), | h1(x) |, . . . , | hl(x) |}.
Then, problem (4.1)–(4.4) is equivalent to

minf (x), (5.2)

g(x) 6 0, (5.3)
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x ∈ R (5.4)

andf, g ∈ CM(R). Denote byϕ(x, y) a concave minorant of the functionf (x)
and byψ(x, y) a concave minorant of the functiong(x).

Let x0 ∈ R be an arbitrary point. The optimal valueϕ∗0 of the problem

minϕ(x, x0), (5.5)

g(x) 6 0, (5.6)

x ∈ R (5.7)

gives a lower bound for the optimal valuef ∗ of problem (5.2)–(5.4),ϕ∗0 6 f ∗.
Moreover, ifx1 is an optimal solution of (5.5)–(5.7),ϕ(x1, x0) = ϕ∗0 , theng(x1) 6

0. In other wordsx1 is feasible, which is not less important than optimality, since
the constraint functiong(x) can be highly nonconvex. From the feasibility ofx1

we also get the upper bound:f ∗ 6 f (x1) = f 1. Consider now the problem

minϕ(x, x1), (5.8)

g(x) 6 0, (5.9)

f (x) 6 f 1− ε, (5.10)

x ∈ R (5.11)

whereε is a given accuracy. Letx2 be an optimal solution of (5.8)–(5.11). Then
f (x2) 6 f (x1)− ε, so the current soluion is improved. If problem (5.8)–(5.11) is
infeasible thenx1 is anε-optimal solution.

Problems (5.5)–(5.7) and (5.8)–(5.11) form the main parts of the following
procedure.
Step 0.Take a pointx0 ∈ R and solve problem (5.5)–(5.7). If this problem is

infeasible then the initial problem (5.2)–(5.4) is also infeasible. Otherwise we
obtain an optimal solutionx1. Setk = 1, f 1 = f (x1).

Step k (k > 1). Solve the problem

minϕ(x, xk), (5.12)

g(x) 6 0, (5.13)

f (x) 6 f k − ε, (5.14)

x ∈ R. (5.15)

If this problem is infeasible then stop:xk is anε-optimal solution. Otherwise,
denote byxk+1 the optimal solution of (5.12)–(5.15). Setk = k + 1 and repeat
the iteration.
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Since the feasible set in problem (5.2)–(5.4) is compact andf (x) is a c.m.
(hence l.s.c.) function, the minimal value (if it exists) is finite.Therefore, the above
described procedure is also finite, since at every iteration the recordf k is improved
at least by the accuracyε.

Note, that both problems (5.5)–(5.7) and (5.12)–(5.15) are special problems of
the following type

minp(x), (5.16)

q(x) 6 0, (5.17)

x ∈ R = co{z1, . . . , zN }, N > n+ 1, (5.18)

wherep(x) is a concave andq(x) is a c.m. functions (for problem (5.12)–(5.15)
we can takeq(x) = max{g(x), f (x)− f k + ε}). In the above described procedure
problem (5.16)–(5.18) plays a very essential role. If we can solve this problem, we
have a finite minimization procedure for (5.2)–(5.4). Below, we describe a quite
simple approach, which in general gives a lower bound for the minimal value of
(5.16)–(5.18) and can be used as a lower bounding procedure for a branch and
bound minimization method for (5.16)–(5.18).

Assume thatq(x) is concave. Due to the concavity ofp(x) at least one of the
optimal solutions of (5.16)–(5.18) is reached at a vertex of the feasible set

G = {x ∈ R : q(x) 6 0}. (5.19)

Due to the concavity ofq(x) the vertex setV (G) can be determined by an outer
approximation procedure (see Horst and Tuy 1996), but in this case instead of a
cutting plane we have the cutting surfaceq(x) = 0. Since the verticesV (G) that
belong to the cutting surface (i.e. new vertices) are obtained as intersections of
edges of R with surfaceq(x) = 0 (see Horst et al. 1995) one can use, for example,
the Thieu–Tam–Ban procedure or other procedures (see again Horst et al. 1995) to
determineV (G).

Unfortunately, this approach may be not valid for problems with more than one
concave constraint. For instance, consider the problem

minp(x), (5.20)

qi(x) 6 0, i = 1, . . . , k, k > 1 (5.21)

x ∈ R = co{z1, . . . , zN }, N > n+ 1, (5.22)

whereqi(x) are concave functions. If we use one of the outer approximation meth-
ods mentioned above, then afterk steps we obtain the set

S = co{zk,1, . . . , zk,Nk}
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wherezk,i, i = 1, . . . , Nk are final set of vertices and S may not coincide with
the set setK = co{x ∈ R : qi(x) 6 0, i = 1, . . . , k}. In generalS ⊃ K.
Hence, by the outer approximation approach one can get only a lower boundp =
min16j6Nk p(z

k,j ) for the optimal value of problem (5.20)–(5.22).
However, due to the concavity of all functionsp(x), qi(x), i = 1, . . . , k one

can use the dual boundθ∗ to improvep (this idea was also suggested earlier in
Norkin 1992),

θ∗ = sup
µ>0

θ(µ),

θ(µ) = min
x∈R

L(x,µ),

L(x,µ) = p(x)+
k∑
i=1

µiqi(x).

SinceL(x,µ) is concave inx andR = co{z1, . . . , zN }, then

θ(µ) = min
x∈R

{
p(x)+

k∑
i=1

µiqi(x)

}
= min

16j6N

{
p(zj)+

k∑
i=1

µiqi(z
j )

}
.

Hence, the dual problem

θ∗ = sup
µ>0

min
16j6N

{
p(zj)+

k∑
i=1

µiqi(z
j)

}
. (5.23)

is equivalent to the linear programming problem

supµ0,

p(zj)+
k∑
i=1

µiqi(z
j) > µ0, j = 1, . . . , N,

µi > 0, i = 1, . . . , k.

Now, let us come back to problem (5.16)–(5.18). Sinceq(x) is a c.m. function,
problem (5.16)–(5.18) can be seen as a problem with an infinite number of concave
constraints in contrast to problem (5.20)–(5.22). In this case one can approximate
problem (5.16)–(5.18) by problem (5.20)–(5.22) for someqi(x) andk and obtain
a lower bound through (5.23). If the obtained lower bound is not satisfactory (in
some sense) then add a new constraintqk+1(x) 6 0 to problem (5.20)–(5.22), set
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k = k + 1 and solve again (5.23). These calculations can be repeated untill a
stopping criterion is fulfilled.

Here, we suggest a generalization of the outer approximation approach with
dual lower bounds (5.23). Letη(x, y) be a concave minorant ofq(x). Then the
suggested outer approximation procedure is as follows:
Step 0.Takex0 ∈ R, define the initial vertex setV 0 = {z1, . . . , zN }. Determine

z0 = argmin
16j6N

p(zj ),

θ∗0 = p(z0).

If q(z0) 6 0 then stop:z0 is the optimal solution.

Step k (k > 1). Determine

θ∗k = sup
µ>0

min
zj∈V k−1

{
p(zj )+

k−1∑
i=1

µiη(z
j , zi)

}
, (5.24)

andµk : θ(µk) = θ∗k .
Determine

zk = argmin
zj∈V k−1

{p(zj)+
k−1∑
i=1

µki η(z
j , zi)}.

If q(zk) 6 0 then stop:zk is the optimal solution. Otherwise, determine the new
vertex setV k by enumerating the vertices of the setSk

Sk = Rk−1
⋂
{x : η(x, zk) 6 0},

whereRk−1 = co{V k−1}. Setk = k + 1 and repeat the iteration.
If

θ∗k+1− θ∗k > δ, (5.25)

then we have a good improvement ofθ∗k . Therefore, this procedure can be used for
the bounding operation in a branch and bound method: as soon as (5.25) is violated
we obtain a lower boundθ∗k+1 for the optimal value of (5.16)–(5.18).

The advantage of the described approach consists in the following. We can
estimate the minimal value of problem (5.2)–(5.4) from below even if no feasible
point is known.
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6. On the use of properties ofϕ+(x, y) and ϕ−(x, y)

In this section we consider several examples with different assumptions onf (x)

which imply some usefull properties of the corresponding functionsϕ+(x, y) and
ϕ−(x, y).

Assume thatf (x) is a continuously differentiable function,f ∈ C1, which has
a convex majorant functionϕ+(x, y) and a concave minorant functionϕ−(x, y):

ϕ−(x, y) 6 f (x) 6 ϕ+(x, y), ∀x ∈ R, y ∈ R, (6.1)

ϕ−(y, y) = f (y) = ϕ+(y, y), ∀y ∈ R. (6.2)

We start with functionϕ−(x, y).

PROPOSITION 6.1.Letf (x) be a differentiable c.m. function defened on a com-
pact setR, int (R) 6= ∅.Then for every critical pointy ∈ int (R) of functionf (x)
we have

max
x∈R

ϕ−(x, y) = ϕ−(y, y) = f (y).
Proof.From (6.1) it follows that the function

Fy(x) = f (x)− ϕ−(x, y) (6.3)

achieves its global minimum at the support pointy. Assume thaty ∈ int(R).
Sincef (x) is differentiable andϕ−(x, y) is concave inx, the necessary optimality
condition has the form (see, for example, Mine and Fukushima 1981)

∇f (y) ∈ ∂ϕ−(y, y), (6.4)

where∂ϕ−(y, y) denotes the superdifferential ofϕ−(x, y) at the pointy. If y is a
critical point off (x) then∇f (y) = 0. Hence, from (6.4) we have

0 ∈ ∂ϕ−(y, y) (6.5)

The latter inclusion means thatϕ−(x, y) attains its maximum at the pointy. There-
fore, the proposition is proved. 2

From (6.2) it follows that

f (y) = ϕ−(y, y) 6 max
x∈R

ϕ−(x, y) = g−(y). (6.6)

Therefore,

f (y) 6 g−(y), ∀y ∈ R, (6.7)

f (y) = g−(y), y ∈ int(R), ∇f (y) = 0. (6.8)
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Consider now the problem

minf (x), (6.9)

x ∈ R. (6.10)

Assume, that there exists at least one global minimumx∗ of problem (6.9)–(6.10)
such thatx∗ ∈ int(R). Determineg−(y) by (6.6). Then from (6.8) it follows that
problem (6.9)–(6.10) is equivalent to the following one:

ming−(y), (6.11)

y ∈ R. (6.12)

This substitution makes sense if problem (6.11)–(6.12) is easier than (6.9)–(6.10).

EXAMPLE 6.1. Assumef (x) =‖ x ‖2 −h(x), h(x) is a convex finite function
and it is known thatx∗ ∈ int(R) for the corresponding problem (6.9)–(6.10). Then

ϕ−(x, y) =‖ y ‖2 +2yT (x − y)− h(x) = 2yT x− ‖ y ‖2 −h(x)
is a concave minorant off (x) and

g−(y) = max
x∈R

ϕ−(x, y) = − ‖ y ‖2 +max
x∈R
{2yT x − h(x)}

= − ‖ y ‖2 +q(y),
q(y) = max

x∈R
{2yT x − h(x)}. (6.13)

Sinceq(y) is a convex function,g−(y) is again a d.c. function. However, inf (x)
we have the convex quadratic part and an arbitrary concave, whereas ing−(y) these
parts (in some sense) are interchanged. Since the concave part ing−(y) is now
quadratic, one can use this advantage to design an efficient minimization procedure
for the corresponding problem (6.11)–(6.12). The price for a such an interchange
is the convex auxiliary problem in (6.13).

Let us now show how the convex majorant functionϕ+(x, y) can also be used.
Below we do not assume that the global minimum in problem (6.9)–(6.10) belongs
to int(R).

From (6.2) we again have

f (y) = ϕ+(y, y) > min
x∈R

ϕ+(x, y) = g+(y). (6.14)

If x∗ is a global minimum off (x) overR, then

f ∗ = f (x∗) 6 ϕ+(x, x∗), ∀x ∈ R.
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Hence,

f (x∗) 6 min
x∈R ϕ

+(x, x∗) = g+(x∗). (6.15)

Therefore (6.14) and (6.15) imply thatf (x∗) = g+(x∗) and problem (6.9)–(6.10)
is equivalent to

ming+(y), (6.16)

y ∈ R. (6.17)

EXAMPLE 6.2. Let f (x) = h(x) − ∑p

i=1 λix
2
i , λi > 0, i = 1, . . . , p, p 6

n, h(x) is a convex finite function. Then

ϕ+(x, y) = h(x)− 2
p∑
i=1

λixiyi +
p∑
i=1

λiy
2
i

and

g+(y) = min
x∈R

ϕ+(x, y) =
p∑
i=1

λiy
2
i +min

x∈R

{
h(x)− 2

p∑
i=1

λixiyi

}
.

Hence, ifp < n then we obtain a reduction in dimension in the corresponding
problem (6.16)–(6.17) in a rather simple way.

EXAMPLE 6.3. Let nowf (x) = ∑p

i=1 λix
2
i − h(x), λi > 0, i = 1, . . . , p, p 6

n, h(x) is a convex finite function. Then

ϕ−(x, y) = −
p∑
i=1

λiy
2
i + 2

p∑
i=1

λixiyi − h(x)

= −
p∑
i=1

λiy
2
i + 2

p∑
i=1

λixiyi − h(x)+
p∑
i=1

λix
2
i −

p∑
i=1

λix
2
i

=
p∑
i=1

λix
2
i − h(x)+

p∑
i=1

λi(xi − yi)2

= f (x)−
p∑
i=1

λi(xi − yi)2.

Therefore,

f (x)− ϕ−(x, y) =
p∑
i=1

λi(xi − yi)2. (6.18)
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Determine

x = argminx∈Rϕ−(x, y). (6.19)

Then

f ∗ − ϕ−(x, y) 6 f (x)− ϕ−(x, y) =
p∑
i=1

λi(xi − yi)2. (6.20)

Assume now thatp is small,p � n. The error (6.20) of the auxiliary problem
(6.19) depends only on the convex part. Therefore, it is reasonable to minimize
the error by, for example, bisection with respect to the convex variables only. This
is unusual, but it seems unavoidable for creating an efficient algorithm, especially
when problem (6.19) is easy to solve (for example, ifR is a simplex).
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